

Who am I?

Hi! I am Alice Antonelli!

I'm 18 and I attend the last year of high school.

I come from
Montescudaio, an Italian town in Tuscany.

I love rowing and creating (and destroying!) aircraft models.

"Orbital Point of view"

The project was designed following the theme of the competition "Copernicus".
It was created with the aim of tacking some : social and scientific challenges from a ,different point of view: the orbital one. , .

An Idea: the seed of advancement

Can raise interest about space among young people

Young, fertile and motivated minds will lead future advancements of space technology

Creates awareness with a stereoscopic vision of the world.

Sharing:

On 18 June I had the opportunity to talk about Odysseus and my project "Orbital point of view" on the radio, in the program "L'altra Europa" of Radio24. So 123000 people heard me and have known something more about this contest, and the space observation.

A project that reaches the stratosphere

The project consists of a weather balloon in latex connected to an aircraft model with an electronic platform placed over it.
1)The weather balloon is
filled with helium at launch
4)The aircraft model will come back thanks to the on-board electronics

2)The balloon with the attached aircraft model goes up acquiring data
3)When the balloon reaches the burst diameter, a hook will automatically open, detaching the balloon from the aircraft model

Aims of the Project

A For meteorological purposes

Analyze the

 atmosphereB To control air pollution

A To easily collect the acquired data

Share the project

A A cheap, easy to assemble and functional project that everyone can buy to have his own "orbital point of view"

B To inspire young people

Materials and cost analysis:

02 AIRCRAFT MODEL:

A monowing made by:

- Polystyrene
- Balsa
- Epoxy glue
- 2 servos

Partial price:

03 ELECTRONICS:

- 1 APM
- GPS
- Compass
- Power module
- Temperature sensor
- Pressure sensors
- MQ7 (CO sensor)
- MQ131 (O3 sensor)
- Battery

Partial price:
97,00 euro 15,00 euro.
$p(h)=1013 e^{\wedge}(-0,13 h)$

- Foglio di calcolo

P=atmospheric pressure (mbar)
h= altitude over sea level of Earth (km)

With this information we can know the medium speed of ascent, how much it will expand, and the lift of the monowing in every different quote.

- $\quad \rho=$ air density
- $\quad V=$ speed;
- $S=$ wing surface
- $L=$ lift
- Cl=lift coefficent

Balloon's features:

Balloon						
type:	Helium $\left(\mathrm{m}^{\wedge}\right):$	Max altitude: (m)	Time to burst: (min)	Upward speed: $(\mathrm{m} / \mathrm{s})$	Price: $(€)$	Weight: (kg)
600g Pawn	3,233	24996	83	5.0	24	1,5

Balloon's features

Balloon's neck is closed with 2 tapes autozip for automatic closing.

To the neck is connected a nylon cord:

- It withstands up to 220 N / m
- It's 5 m long

To the other end of cord there is a plastic ring, that is inside a hook.

The aircraft model: monowing

That's the "Prandtl-M", a reference model, designed to fly in low pressure conditions (7-9 hPa on Mars)

This shape allows to add additional weight on it, like electronics

It does not have a defined fuselage, so it has less weight and less aerodinamic drag if compared to other models.

- Wingspan: 1300 mm
- Surface: $30 \mathrm{dm} \wedge 2$
- Weight: 450 g
- Wing loading:15g/dm^2
- Profile:sn28
- Elevons' lenght: 30 cm
- Winglet: 15 cm

How to create a monowing: 4 easy steps

To create the wing, first create the root and the tip profiles

Attach the draw to a polyester block and, following the profile, cut the polyester with a hot wire. Now you have a wing!

To realise the arrow, cut the raw wing keeping an angle of 60° between the tip and the root

Place a rib of balsa between the two wings to give rigidity and create the landing support. Place a spar at 20% of the length of the wing mean chord and...

IT'S DONE! :

Electronics: the A.P.M.

It is like an Arduino, but with a different hardwareWe can connect:

- GPS ublox Lea-6
- Compass
- Powermodule
- A triaxial accelerometer (included inside)

Store data during the ascent phase, provide the autopilot during the descent phase. It allows the monowing to come back to the base (waypoint)

Let's open the hook's servo:

The hook opens when the balloon bursts, so when the accelerometer reads 0 , the hook's servo turns.
\# include <servo.h> // include la libreria servo int inpin=2; // l'accelerometro è collegato al pin 2 int reading; // la lettura corrente del pin in input servo myservo;// crea un nuovo oggetto chiamato servo

void setup()

\{
myservo.attach(9); // collega il servo al pin 9
PinMode (inPin,input); // il pin 2 va in input
\}
void loop ()
Sketch:
\{reading=digitalread (inPin); //legge i dati digitali e li salva in una variabile if (reading $=0$) \{myservo.write (180); // se i dati digitali dell'accelerometro sono uguali al valore impostato il servo ruota di 180°
delay (1000); //aspetta Is \}
else \{ myservo.write (0);
delay (1000);
\}
\}

Balloon trajectory forecast

Balloon Trajectory Forecasts

Which initial GFS model time? $18 Z 09$ June $2016 \vee$
The forecast is extracted from the Global Forecast System (GFS) which is run four times per day. The times listed are Universal Time.
Which forecast period? 24 hour \vee
The valid time for the forecast is the sum of the model initialization time and the forecast period.

What location?

Specify Lat/Lon $\quad \vee$ Latitude: 43.314 Longitude: 0.0964

Values must be decimal degrees with west negative.
Balloon Ceiling: 30000 meters

Calculate drop speed \square

| Gondola mass [kg] 45 | |
| :--- | :--- | :--- |
| Chute diameter $[\mathrm{m}]$ | 5.5 |
| Drag coefficient | 0.7 |

Output Format: List \bigcirc GoogleEarth KML

```
Submit
```


Further project developments:

1) Aim: To reach a bigger altitude (45 km)

2) How: connecting two balloons and control the helium flow between them with a valve.

When one of the two balloons is about to burst, the valve will open allowing the helium to flow into the empty balloon. The volume of the primary balloon will decrease and the ascent force will remain the same.

Further project developments:

Mission Timescale

Project's results:

IMAGES:

Can generate interest about space among young people and rise awareness about a more sustainable exploitation of our planet

RETURN:
The system allows us to save money and time

COST:
We can build it
with just 150 euro

SHARING:
Every student of the world can have its own balloon and get inspired through it.

ANALYSIS
A.P.M: we can collect weather data and, thanks to the additional sensors available on the A.P.M., other parameters useful to measure the quality of air.

THANK YOU for your attention
 ...Now have your say!

