Laertiadae Classis

ODYSSEUS Introduction

The goal of mankind is to become a multiplanet species, otherwise the alternative is to remain on Earth forever and head straight for an eventual extinction event.

But why do we choose

 Mars?- We took in consideration all the planets of our Solar System, with a particular attention to the 3 rocky planets: Mercury, Venus and Mars. After several analysis we found that Mars is the best planet that human kind can colonize

Mars is the best planet that mankind can colonize.

Mars/Earth Comparison

Table

	Mars	Earth
Atmosphere (composition)	Carbon dioxide (95,32\%) Nitrogen ($2,7 \%$) Argon (1,6\%) Oxygen (0,13\%) Water vapor (0,03\%) Nitric oxide (0,01\%)	```Nitrogen (77\%) \\ Oxygen (21\%) \\ Argon (1\%) \\ Carbon dioxide (0,038\%)```
Atmosphere (pressure)	7,5 millibars (average)	1013 millibars (at sea level)
Equatorial Radius	3397 kilometers	6378 kilometers
Gravity	0,375 that of Earth	2,66 times that of Mars
Length of Day	24 hours, 37 minutes	24 hours
Length ofYear	687 Earth days	365 days
Surface Temperature	$-63^{\circ} \mathrm{C}$	$14^{\circ} \mathrm{C}$
Tilt of Axis	25°	$23,45^{\circ}$

Landing Zone Selection

The best sites: $\quad-25^{\circ}<$ Latitude $<25^{\circ}$
Water >5\%

Landing Zone Selection

- The finalist sites:

Site	Latitude	Water Availability	Geological interest	Biological interest	Final mark
Gale Crater	-5.4°	$\approx 7 \%$	$9 / 10$	$8 / 10$	8
Gusev Crater	-14.5°	$\approx 10 \%$	$8 / 10$	$10 / 10$	9
Planum Meridians	$\approx 0^{\circ}$	$\approx 5 \%$	$7 / 10$	$6 / 10$	7

Planum
Meridiano
S

Gale
Crater Gusev Crater

Gusev Crater

Gusev Crater is an crater which took shape during the first half of Noachian period, when Mars was still damp and with a thick atmosphere.

- The water collected inside the crater, forming a lake, withfa possible hydrothermal activity on the bottom.

Gusev Crater

Why do we use the

$3+\frac{1}{2}$

The Interplanetary Transport System (ITS), also known as the Mars Colonial Transporter (MCT), is the name of a project funded by the private company "SpaceX".

Why do we use the ITS

- The ITS is projected for a possible human settlement on Mars and it includes reusable launch vehicles and spacecraft. Its technology can also support some eventual exploration missions to other locations of our Solar System.

Length	$49,5 \mathrm{~m}$
Max Diameter	$17,0 \mathrm{~m}$
Propellant Mass	Ship: Tanker: 2500 t
Dry Mass	Ship: 150 t Tanker: 90 t
Cargo to Mars	450 t (with transfer on orbit)

Why do we use the ITS

1. It comes from a private agency, so everybody can use it (international);
2. It is reusable, so it is not that expensive;
3. It can carry an heavy payload to Mars;
4. It is possible to modify the inner part.

Mission One - Profile

- Phase o: ResourceDragon

Mars E.D.L.

ResurceDragon

Water Extractor

Resources production

- Water extraction:
-"Salt extraction":

Another method is to capture the Martian humidity via salts by the atmosphere.

heat
-Soil mining:

The soil is composed of a 10% ice; heating soil is possible to let ice evaporate and separate Water.

Resources production

Resources production

- Oxygen Production:

- A part of Oxygen can be generated from Martian CO2 through this reaction:

- That is catalyzed by a series of Electroceramics, which detach an atom of Oxygen using electric current. The excess CO is expelled to the outside atmosphere.

Resources production

- Fuel (Methane/ Oxygen) production:
- The procedure to produce fuel is very long, so the cargo section should arrive on Mars more than a 6 year before the crew.
$4 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{O}_{2}+4 \mathrm{H}_{2}$ electrolysis

Sabatier reaction $4 \mathrm{H}_{2}+\mathrm{CO}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{CH}_{4}$

Some Numbers

1 Kg of regolith

$89 \mathrm{~g} \mathrm{of} \mathrm{CH}_{4}$

66 g of O 2.

- We need $\mathbf{5 0 0}$ ton of CH_{4} : it's necessary to work 4508 ton of regolith. With this process we will produce also 297 ton of $\mathbf{O 2}$.
- The 'ResourceDragons' will work on Mars for 1450 days (4 years). It means that they will produce 3 ton of regolith each day.

The oven will have to heat about $0,09 \mathrm{~m}^{\mathbf{3}}$ of regolith in a hour.

Mission One - Profile

- Phase I: Cargo and Base

Mars
E.D.L. lay down orbital refueling

304 days trip

5X

recycling

launch

The most delicate maneuver is the one that allows to position the ITS/Base horizontally after landing.

Landing position

Base Planimetry

Base Planimetry

VR room

Mission One - Profile

- Phase II: Crew round trip

Mars
E.D.L.

Crew launch

Mission One

- Crew: 6 People (3 man and 3 women);
- Stay on Mars: 40 Days;
- Crew Launch: 6 February 2031
- Targets: -Install a first human outpost on Mars;
-Search traces of Life;
-Study the past of the Gusev Crater;

The crew

> 2 aerospace engineers;
>1 medical doctor (who has some knowledge in biology);
>1 biologist (who has some knowledge in medicine);
>1 geologist (who has some knowledge in astrophysics);
>1 astrophysicist (who has some knowledge in geology).

Weightlessness Solutior

- The Skin-Suit

It is a particular suit which provides 'loading' in the head-to-foot direction, for recreating the load of gravity on Earth, but in weightlessness.

Surface Operation

- The crew will have a rover with which will realize 3 trips, each towards a Region Of Interest (ROI):

Site	Distance	Travel Time	Coordinates
Landing Site	o Km	o hours	$\begin{gathered} 14^{\circ} 47^{\prime} 25^{\prime \prime} \mathrm{S} \\ 175^{\circ} 51^{\prime} 54^{\prime \prime} \mathrm{E} \end{gathered}$
$\frac{\text { Columbia }}{\text { Hills }(A)}$	22 Km	1 hours	$\begin{aligned} & 14^{\circ} 35^{\prime} \mathrm{S} \\ & 175^{\circ} 31^{\prime} \mathrm{E} \end{aligned}$
Pingo (B)	33 Km	1.65 hours	$\begin{aligned} & 14^{\circ} 14^{\prime} \mathrm{S} \\ & 175^{\circ} 57^{\prime} \mathrm{E} \end{aligned}$
$\frac{\text { Ma'adim }}{\text { delta (C) }}$	40 Km	2 hours	$\begin{aligned} & 15^{\circ} 20^{\prime} \mathrm{S} \\ & 175^{\circ} 31^{\prime} \mathrm{E} \end{aligned}$

The travel times are based on the maximum speed of the rover $20 \mathrm{~km} / \mathrm{h}$

Surface Operation

Weather

Seismic survey

- A method $\sqrt{\text { Thanks to this technique it is possible to analyze }}$ the subsoil placing some seismometers and blowing up small charges on the surface.

Mission Profile One

- Phase IV: Crew return trip Mars

\square

Crew launch

Mission Two

- Crew: 6 People (3 man and 3 women);
- Stay on Mars: more than a year;
- Crew Launch: 2033
- Targets: -Extend the Martian Base;
-Characterize the environment of Gusev crater on the Long period;
- Search traces of Life;

Mission Two - Profile

- Phase I: Crew round trip

Mars
E.D.L.
orbital refueling

Ithaca Outpost

A module for the resources
An hanflatuctionale y
An infirmary module

A greenhouse module
The ITS/
An airlockase mbdule

A kitchen module

The Dome

The modules will be divided into 2 floors. The first floor will be located to an height of $3,5 \mathrm{~m}$ from the ground floor, for a total surface of (about) $590 \mathrm{~m}^{2}$ usable.

Radiation shielding

-Superconductor: $\operatorname{SmFeAs}(\mathrm{O}, \mathrm{F})$;
-Cooling: LOX at 50K;

* \quad B intensity: $>5 \mathrm{~T}$.

Window subunits

OUT

Piezoelectric

Carbon Fiber scaffolding

Anti-micrometeoric glass

Energy production

Transpare nt Solar Panel

piezoelectrici

t.

The Gusev Crater zone has been very active in the past and have a heat flow of about $7 \mathrm{~mW} / \mathrm{m}^{\wedge} 2$; We use this heat to heat the base environments and produce energy. Heat Pump

Humus production

Growth's Plants Exneriment

Resource Usage

Food On Mars

These kinds of insects are very rich in almost all the

Trouts
We could thir Mars 2 مr
nutrients that the human body needs to survive. The crew can bring on Mars 1 Kg of cricket's eggs and 1 Kg of waxworm's eggs.

ssion it could g on Mars
kworm
d hen's eggs. ee eggs,
nutrients. breed and they can be feed with died insects or some vegetables and fruits.
VRigdisfers and hens

Food On Mars

Corn

Corn is a cerea carbohydrates. crew, hens and

Olives

We can also plant some coffee's plants and use an "Espresso" coffee machine to brew good coffee.
$=$ We will beg
We will beg
ain C vitamin and ood in case of

Farming

Astronaut Diet

- With the greenhouse extension during the second mission, the cultivable space will be increased to $470 \mathrm{~m}^{\mathbf{2}}$; this space will be cultivated with a lot of new plant species, which will enrich the astronauts diet. The greenhouse will make the base totally independent from Earth.

Astronaut Diet

Food	Carbs	Fats	Proteins	Sugars	Energy (Kcal) for $\mathbf{1 0 0} \mathbf{g}$
Apples	$12,76 \mathrm{~g}$	Minimum	$0,27 \mathrm{~g}$	$10,1 \mathrm{~g}$	48
Apricots	$11,12 \mathrm{~g}$	$0,39 \mathrm{~g}$	$1,4 \mathrm{~g}$	$9,24 \mathrm{~g}$	48
Oranges	$11,75 \mathrm{~g}$	$0,12 \mathrm{~g}$	$0,94 \mathrm{~g}$	$9,35 \mathrm{~g}$	47
Peaches	$9,54 \mathrm{~g}$	$0,25 \mathrm{~g}$	$0,91 \mathrm{~g}$	$8,39 \mathrm{~g}$	39
$\underline{\text { Strawberries }}$	$7,68 \mathrm{~g}$	Minimum	$0,67 \mathrm{~g}$	$4,89 \mathrm{~g}$	32
$\underline{\text { Kiwis }}$	$14,66 \mathrm{~g}$	$0,52 \mathrm{~g}$	$1,14 \mathrm{~g}$	$8,99 \mathrm{~g}$	61
$\underline{\text { Spinach }}$	$3,73 \mathrm{~g}$	$0,26 \mathrm{~g}$	$2,97 \mathrm{~g}$	$0,43 \mathrm{~g}$	23
Asparagus	$3,88 \mathrm{~g}$	$0,12 \mathrm{~g}$	$2,2 \mathrm{~g}$	$1,88 \mathrm{~g}$	20
$\underline{\text { Tomatoes }}$	$3,90 \mathrm{~g}$	Minimum	$0,9 \mathrm{~g}$	$2,63 \mathrm{~g}$	18
$\underline{\text { Lettuce }}$	$2,23 \mathrm{~g}$	Minimum	$1,35 \mathrm{~g}$	$0,94 \mathrm{~g}$	13
Beans	$47,5 \mathrm{~g}$	$2,0 \mathrm{~g}$	$23,6 \mathrm{~g}$	$3,50 \mathrm{~g}$	291

Astronaut Diet

Food	Carbs	Fats	Proteins	Sugars	Energy (Kcal) for 100 g
Hazelnuts	$17,6 \mathrm{~g}$	Minimum	15 g	$4,89 \mathrm{~g}$	646
Carrots	$9,58 \mathrm{~g}$	Minimum	$0,93 \mathrm{~g}$	$4,74 \mathrm{~g}$	41
Potatos	$17,47 \mathrm{~g}$	Minimum	$2,02 \mathrm{~g}$	$0,78 \mathrm{~g}$	77
$\underline{\text { Olives }}$	$3,84 \mathrm{~g}$	$15,32 \mathrm{~g}$	$1,03 \mathrm{~g}$	$0,54 \mathrm{~g}$	145
Zucchinis	$3,35 \mathrm{~g}$	$0,18 \mathrm{~g}$	$1,21 \mathrm{~g}$	$2,2 \mathrm{~g}$	16
Green Beans	$6,97 \mathrm{~g}$	$0,22 \mathrm{~g}$	$1,83 \mathrm{~g}$	$3,26 \mathrm{~g}$	31
Cane Sugar	$98,09 \mathrm{~g}$	0 g	$0,12 \mathrm{~g}$	$97,02 \mathrm{~g}$	380
Cocoa	$51,39 \mathrm{~g}$	$23,17 \mathrm{~g}$	$16,8 \mathrm{~g}$	$1,55 \mathrm{~g}$	486
Corn	$76,85 \mathrm{~g}$	$3,86 \mathrm{~g}$	$6,93 \mathrm{~g}$	Minimum	361
Lemon	$9,32 \mathrm{~g}$	$0,3 \mathrm{~g}$	$1,1 \mathrm{~g}$	$2,5 \mathrm{~g}$	29
Lentils	$60,08 \mathrm{~g}$	$1,06 \mathrm{~g}$	$25,8 \mathrm{~g}$	$2,03 \mathrm{~g}$	353

Astronaut Diet

Food	Carbs	Fats	Proteins	Sugars	Energy (Kcal) for 100 g
Chickpea	$60,65 \mathrm{~g}$	$6,04 \mathrm{~g}$	$19,3 \mathrm{~g}$	$10,7 \mathrm{~g}$	364
Chicken	$5,3 \mathrm{~g}$	$2,5 \mathrm{~g}$	$20,1 \mathrm{~g}$	Minimum	125
Trouts	Minimum	$6,18 \mathrm{~g}$	$19,94 \mathrm{~g}$	Minimum	141
Crickets	$64,9 \mathrm{~g}$	$13,8 \mathrm{~g}$	$64,9 \mathrm{~g}$	Minimum	534
Waxworms	$3,70 \mathrm{~g}$	$32,8 \mathrm{~g}$	$52,7 \mathrm{~g}$	Minimum	649
Dried Milk	$51,98 \mathrm{~g}$	Minimum	$36,16 \mathrm{~g}$	$51,98 \mathrm{~g}$	362
Canned Meat	Minimum	$3,30 \mathrm{~g}$	$19,0 \mathrm{~g}$	Minimum	111
Canned Tuna	Minimum	$8,21 \mathrm{~g}$	$29,13 \mathrm{~g}$	Minimum	198
Hen's Egg	$1,1 \mathrm{~g}$	11 g	13 g	Minimum	145
Black Chocolate	$52,42 \mathrm{~g}$	$38,31 \mathrm{~g}$	$6,12 \mathrm{~g}$	$36,71 \mathrm{~g}$	579

-Green: Cultivated on Mars surface; -Yellow: Farmed on Mars surface; -Red: Brought from Earth.

Mission Three

This is another

ccisel.... Thank
 / / -

Mission Three

- whekivokayme
 Arfounuldixif for
 re EGiofus

Mission Three

Mission Three

Fecundated sox $\{$

Ce

COW's

egg

And make them evolve in the
biolabt

Mission Three

To create a real Martian farm

Laertiadae Classis

Thanksgivings

- We want to thanks for their support and contribution:
- Riccardo Stevanato for his help in the model realization;
- Andrea Segoni, Maurizio Gioi, Sabina Tomasicchio for his help in the 3D modeling of the Ithaca Outpost;

And in the end

- Our teacher Maura Bruno for her confidence and support.

Sources

- http://phoenix.lpl.arizona.edu/mars111.php
- https://marsnext.jpl.nasa.gov/workshops/2014_05/36_Rice \%202020\%20Rover\%20Gusev.pdf
- https://eps.utk.edu/faculty/burr/pubs/o6Bruno_etal JGR.pdf
- http://www.nature.com/articles/ncomms13554
- https://www.flickr.com/photos/136797589@No4l
- https://ssed.gsfc.nasa.gov/IPM/PDF/1134.pdf
- http://energy.mit.edu/news/transparent-solar-cells/

