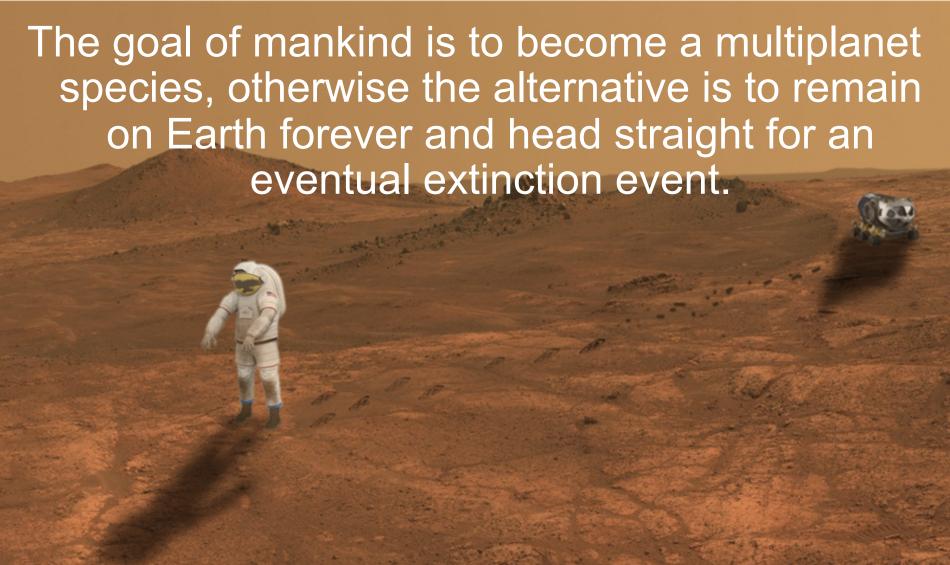
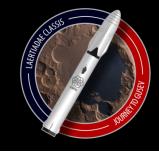
Laertiadae Classis

Presents...

Journey to Gusev

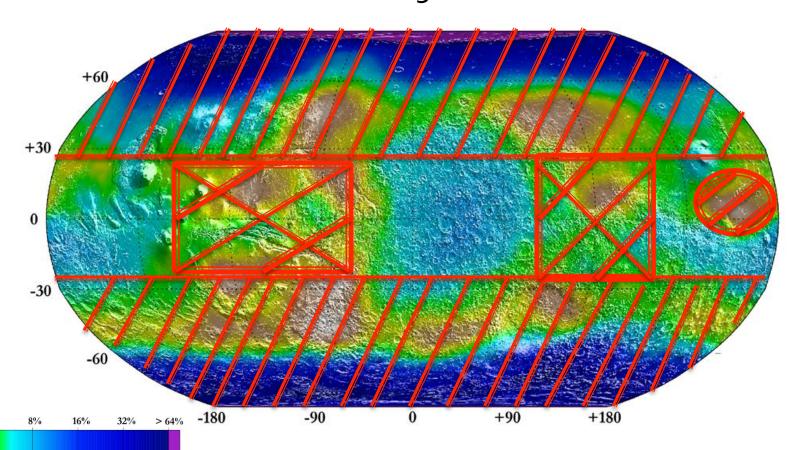

ODYSSEUS EUROPEAN YOUTH SPACE CONTEST A project by Francesco Maio (Fg) and Linda Raimondo (To) ITALY



YSSEUS Introduction

But why do we choose Mars?

 We took in consideration all the planets of our Solar System, with a particular attention to the 3 rocky planets: Mercury, Venus and Mars. After several analysis we found that Mars is the best planet that human kind can colonize


Mars/Earth Comparison Table

	Mars	Earth	
Atmosphere (composition)	Carbon dioxide (95,32%) Nitrogen (2,7%) Argon (1,6%) Oxygen (0,13%) Water vapor (0,03%) Nitric oxide (0,01%)	Nitrogen (77%) Oxygen (21%) Argon (1%) Carbon dioxide (0,038%)	
Atmosphere (pressure)	7,5 millibars (average)	1013 millibars (at sea level)	
Equatorial Radius	3397 kilometers	6378 kilometers	
Gravity	o,375 that of Earth	2,66 times that of Mars	
Length of Day	24 hours, 37 minutes	24 hours	
Length of Year	687 Earth days	365 days	
Surface Temperature	-63° C	14° C	
Tilt of Axis	25°	23,45°	

Landing Zone Selection

The best sites: -25°< Latitude <25°</p>
Water >5%

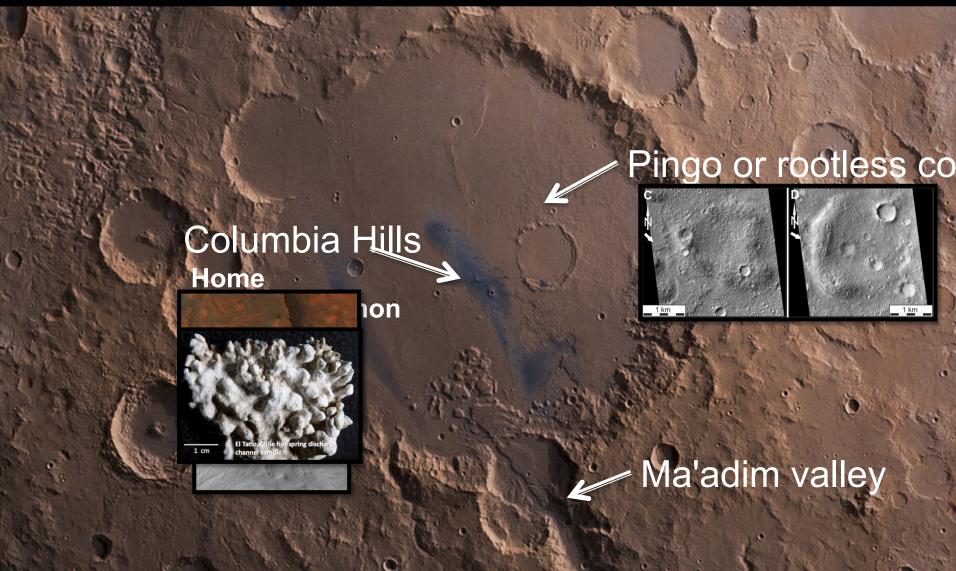
Landing Zone Selection

THE PROPERTY OF THE PROPERTY O

The finalist sites:

Site	Latitude	Water Availability	Geological interest	Biological interest	Final mark	
Gale Crater	-5.4°	≈7%	9/10	8/10	8	
Gusev Crater	-14.5°	≈10%	8/10	10/10	9	
Planum Meridians	≈0°	≈5%	7/10	6/10	7	

Gusev Crater



 Gusev Crater is an crater which took shape during the first half of Noachian period, when Mars was still damp and with a thick atmosphere.

The water collected inside the crater, forming a lake, with a possible hydrothermal activity on the bottom.

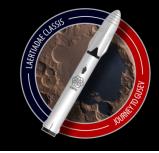
Gusev Crater

Why do we use the ITS:

The Interplanetary Transport System (ITS), also known as the Mars Colonial Transporter (MCT), is the name of a project funded by the private company "SpaceX".

Why do we use the ITS:

 The ITS is projected for a possible human settlement on Mars and it includes reusable launch vehicles and spacecraft. Its technology can also support some eventual exploration missions to other locations of our Solar System.

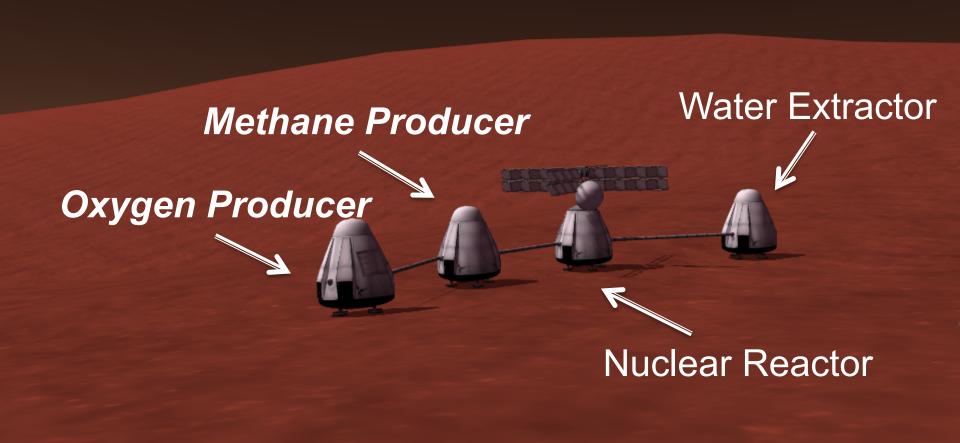

Length	49,5 m	
Max Diameter	17 , 0 m	
Propellant Mass	Ship: 195 Tanker: 250	
Dry Mass	Ship: 150 Tanker: 90 to	
Cargo to Mars	450 t (with transfer on orbit)	

Why do we use the ITS:

- It comes from a private agency, so everybody can use it (international);
- 2. It is reusable, so it is not that expensive;
- 3. It can carry an heavy payload to Mars;
- 4. It is possible to modify the inner part.

Mission One - Profile

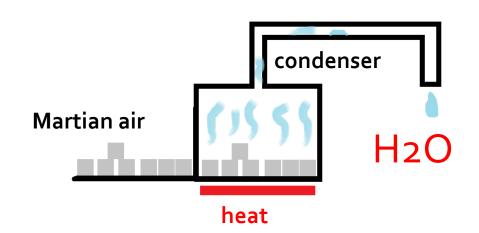
launch

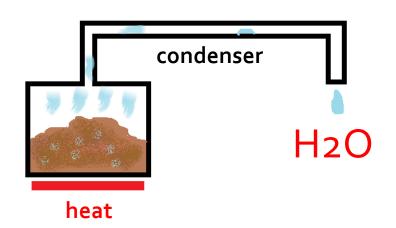


Phase o: ResourceDragon Mars E.D.L. 304 days trip Launch 08/11/2026 **9**X Landing recycling 68/09/2027

Earth

ResurceDragon

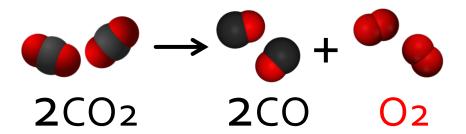

Water extraction:


-"Salt extraction":

Another method is to capture the Martian humidity via salts by the atmosphere.

-Soil mining:

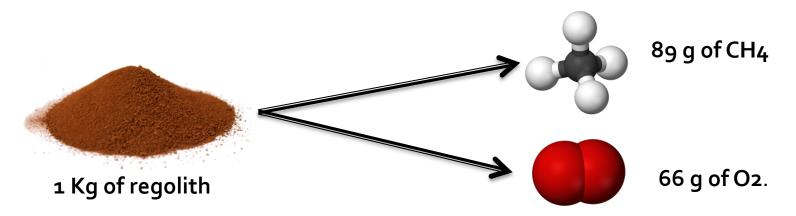
The soil is composed of a 10% ice; heating soil is possible to let ice evaporate and separate Water.



Oxygen Production:

 A part of Oxygen can be generated from Martian CO2 through this reaction:

- That is catalyzed by a series of Electroceramics, which detach an atom of Oxygen using electric current.
 - The excess CO is expelled to the outside atmosphere.


- Fuel (Methane/ Oxygen) production:
- The procedure to produce fuel is very long, so the cargo section should arrive on Mars more than a 6 year before the crew.

$$4H_2O \rightarrow 2O_2 + 4H_2$$
 electrolysis

Sabatier reaction $4H_2 + CO_2 \rightarrow 2H_2O + 4CH_4$

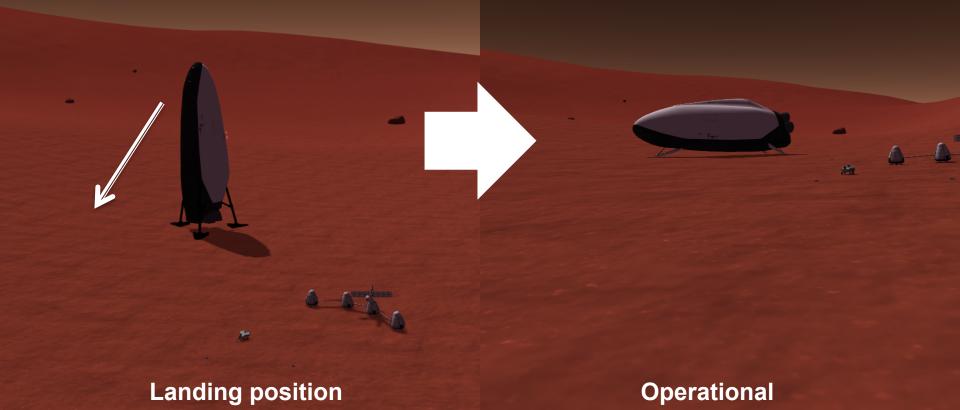
Some Numbers...

- We need 500 ton of CH4: it's necessary to work 4508 ton of regolith. With this process we will produce also 297 ton of O2.
- The 'ResourceDragons' will work on Mars for 1450 days (4 years).
 It means that they will produce 3 ton of regolith each day.

The oven will have to heat about o, o9 m³ of regolith in a hour.

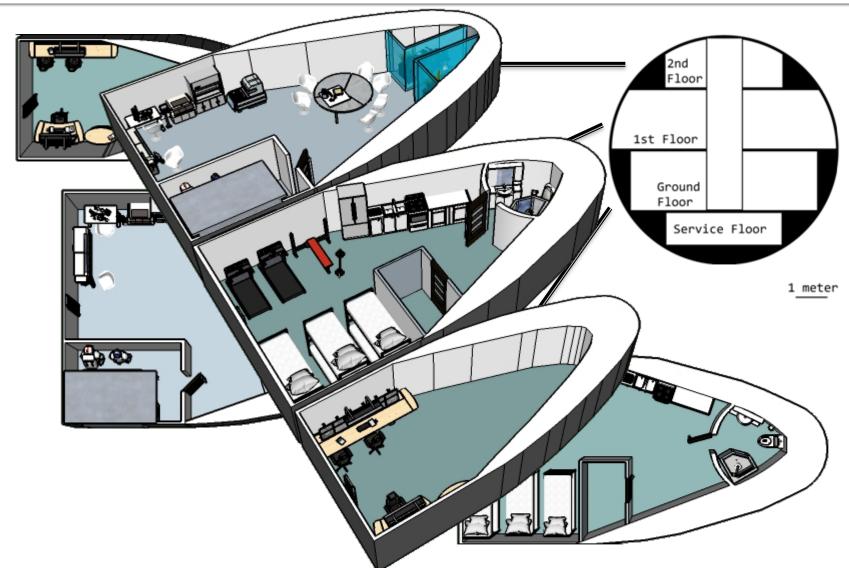
Mission One - Profile

launch

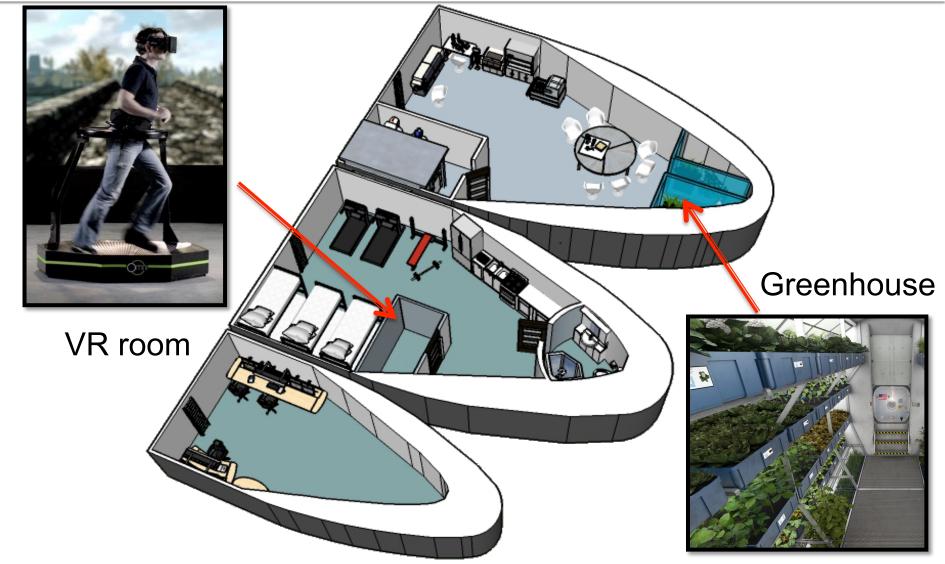

Phase I: Cargo and Base lay down Mars E.D.L. orbital refueling 304 days trip Launch 29/11/2028 **5**X Landing recycling 09/11/2029

Earth

"Lay down" Maneuver



The most delicate maneuver is the one that allows to position the ITS/Base horizontally after landing.


Base Planimetry

Base Planimetry

Mission One - Profile

Crew launch

Phase II: Crew round trip E.D.L. Mars orbital refueling 313 days trip Depart Mars Depart Earth Sun **5**X recycling

Earth

Mission One

- Crew: 6 People (3 man and 3 women);
- Stay on Mars: 40 Days;
- Crew Launch: 6 February 2031
- Targets: -Install a first human outpost on Mars;
 - -Search traces of Life;
 - -Study the past of the Gusev Crater;

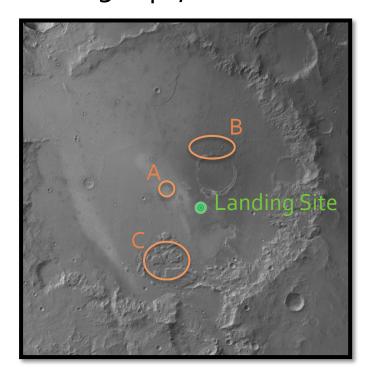
The crew

- > 2 aerospace engineers;
- > 1 medical doctor (who has some knowledge in biology);
- > 1 biologist (who has some knowledge in medicine);
- > 1 geologist (who has some knowledge in astrophysics);
- > 1 astrophysicist (who has some knowledge in geology).

Weightlessness Solution

The Skin-Suit

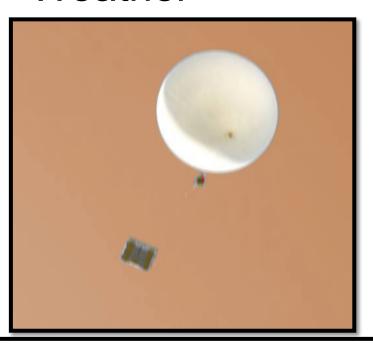
It is a particular suit which provides 'loading' in the head-to-foot direction, for recreating the load of gravity on Earth, but in weightlessness.


Surface Operation

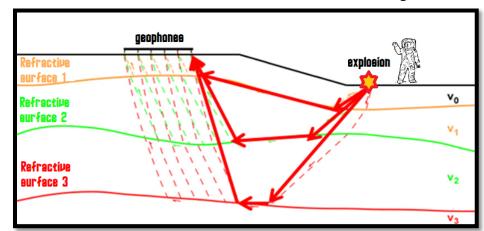
The crew will have a rover with which will realize 3 trips, each

towards a Region Of Interest (ROI):

Site	Distance	Travel Time	Coordinates
<u>Landing</u> <u>Site</u>	o Km	o hours	14°47′ 25″ S 175° 51′ 54″ E
<u>Columbia</u> <u>Hills (A)</u>	22 Km	1 hours	14° 35′ S 175° 31′ E
Pingo (B)	33 Km	1.65 hours	14° 14′ S 175° 57′ E
<u>Ma'adim</u> <u>delta (C)</u>	40 Km	2 hours	15° 20′ S 175° 31′ E

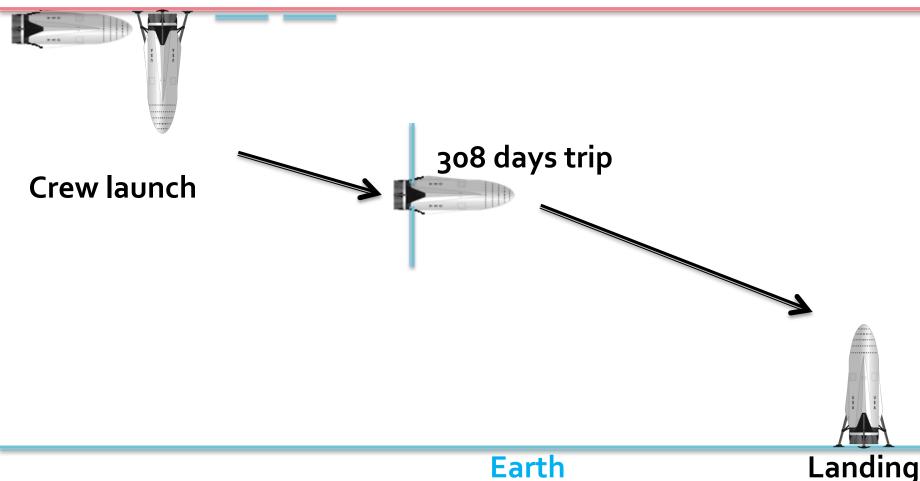


The travel times are based on the maximum speed of the rover 20 km/h


Surface Operation

Weather

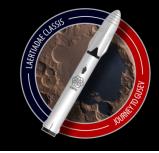
Seismic survey


•A method f structure an of the Marti

Thanks to this technique it is possible to analyze the subsoil placing some seismometers and high resolut blowing up small charges on the surface.

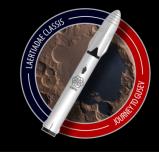
Mission Profile One

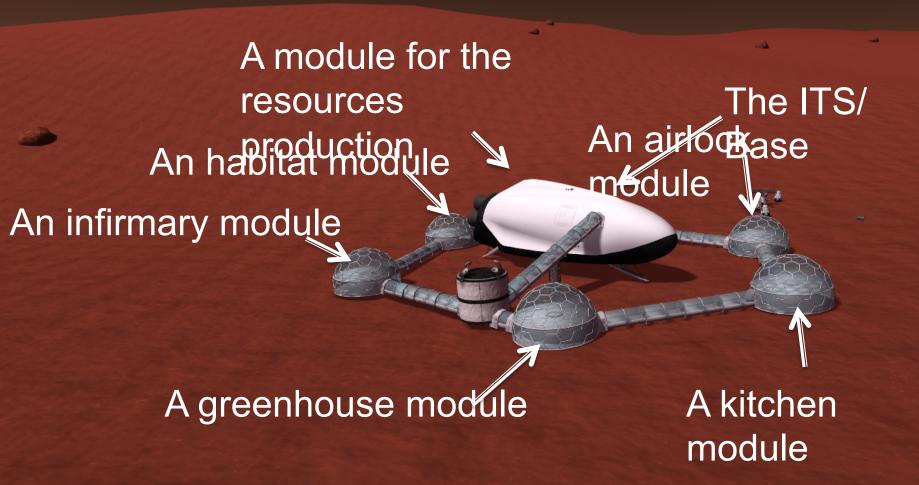
Phase IV: Crew return trip Mars


Mission Two

- Crew: 6 People (3 man and 3 women);
- Stay on Mars: more than a year;
- Crew Launch: 2033
- <u>Targets:</u> -Extend the Martian Base;
 - -Characterize the environment of Gusev crater on the Long period;
 - Search traces of Life;

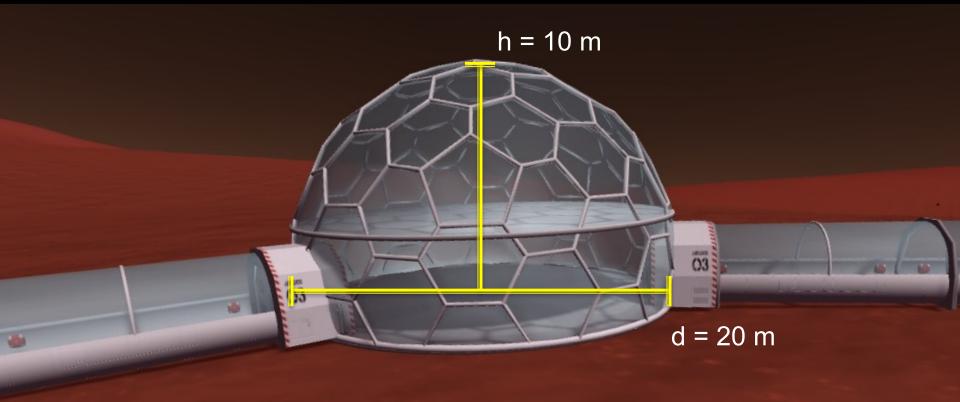
Mission Two - Profile


Crew launch

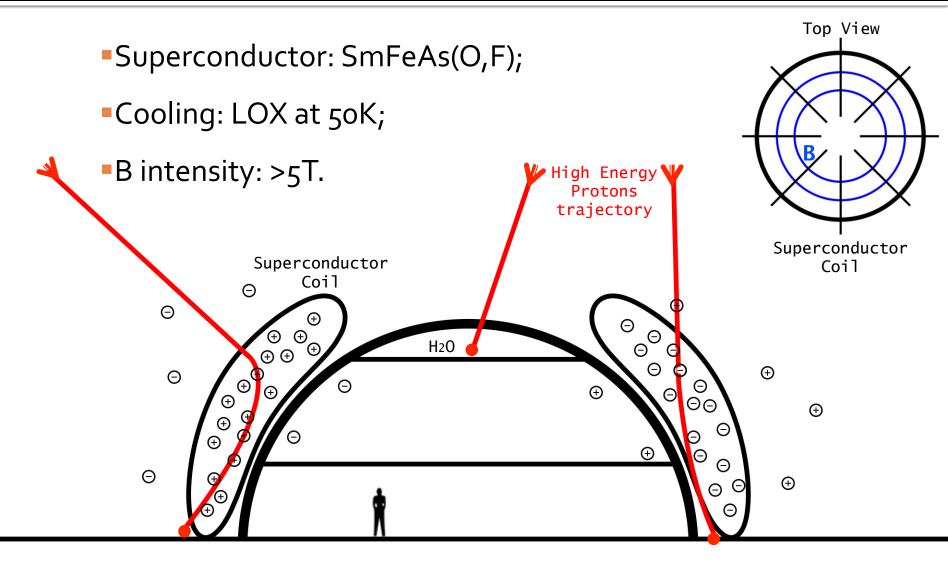


Phase I: Crew round trip E.D.L. Mars orbital refueling 192 days Launch **5**X 17/04/2033 Landing 26/10/2033 recycling

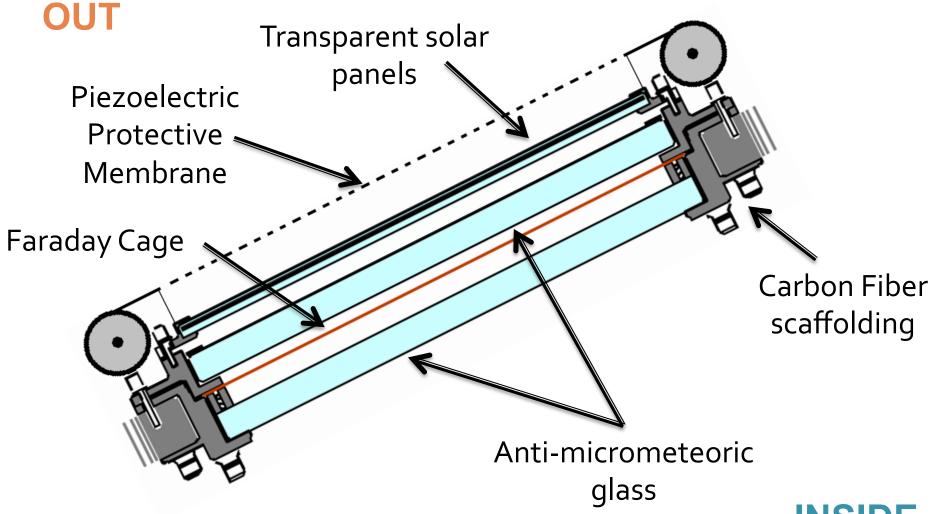

Earth


Ithaca Outpost

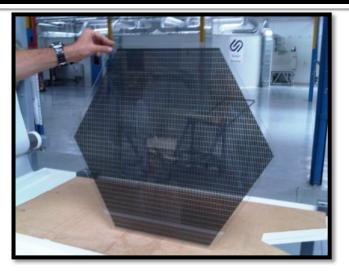
The Dome

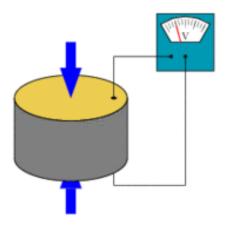


The modules will be divided into 2 floors. The first floor will be located to an height of 3,5 m from the ground floor, for a total surface of (about) **590 m²** usable.

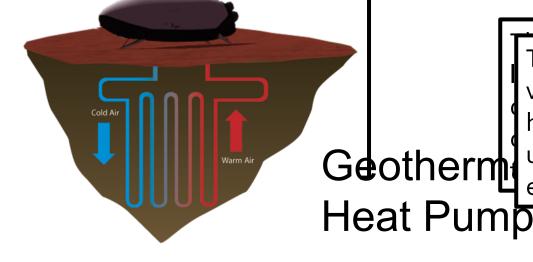

Radiation shielding

Window subunits





Energy production

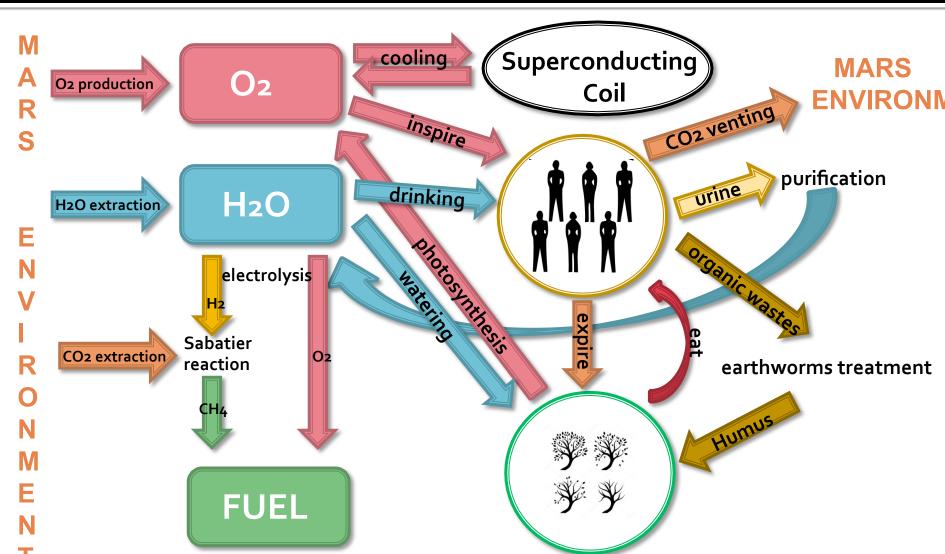


Transpare nt Solar Panel

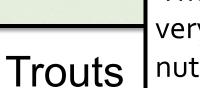
piezoelectrici

The Gusev Crater zone has been very active in the past and have a heat flow of about 7 mW/m^2; We use this heat to heat the base environments and produce energy.

Humus production



Growth's Plants Experiment


Resource Usage

Food On Mars

We could thin Mars 2 or 4 Ko

These kinds of insects are very rich in almost all the nutrients that the human body needs to survive. The crew can bring on Mars 1 Kg of cricket's eggs and 1 Kg of waxworm's eggs.

they can be feed with died insects or some vegetables and fruits.

ssion it could

g on Mars

ce eggs,

l hen's eggs.

nutrients.

breed and

kworm

sters and hehs

Crickets

Food On Mars

Corn is a cereal carbohydrates. crew, hens and

Corn

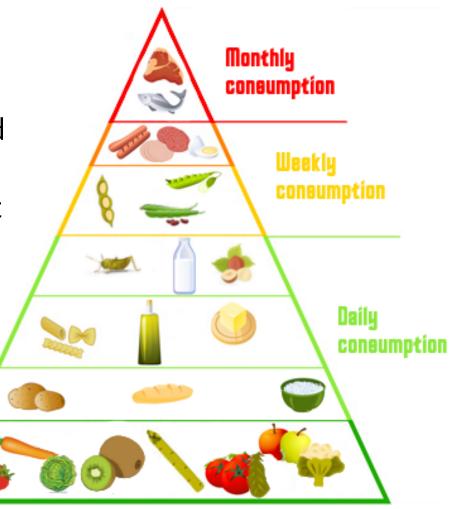
Farming

Olives

We can also plant some coffee's plants and use an "Espresso" coffee machine to brew good coffee.

some or ther

ain C vitamin and pod in case of


We will beg

oil on Mars Coffee

Lemons

With the greenhouse extension during the second mission, the cultivable space will be increased to 470 m²; this space will be cultivated with a lot of new plant species, which will enrich the astronauts diet. The greenhouse will make the base totally independent from Earth.

Food	Carbs	Fats	Proteins	Sugars	Energy (Kcal) for 100 g
<u>Apples</u>	12,76 g	Minimum	o,27 g	10,1 g	48
<u>Apricots</u>	11,12 9	o,39 g	1,4 g	9,24 g	48
<u>Oranges</u>	11,75 g	0 , 12 g	o,94 g	9,35 9	47
<u>Peaches</u>	9 , 54 g	0,25 g	0,91 g	8,39 g	39
<u>Strawberries</u>	7 , 68 g	Minimum	o , 67 g	4 , 89 g	32
<u>Kiwis</u>	14 , 66 g	0,52 g	1,14 g	8,99 g	61
<u>Spinach</u>	3,73 g	o,26 g	2 , 97 g	o,43 g	23
<u>Asparagus</u>	3,88 g	0,12 g	2,2 g	1,88 g	20
<u>Tomatoes</u>	3,90 g	Minimum	o,9 g	2,63 g	18
<u>Lettuce</u>	2,23 g	Minimum	1,35 g	o,94 g	13
<u>Beans</u>	47,5 g	2,0 g	23 , 6 g	3,50 g	291

Food	Carbs	Fats	Proteins	Sugars	Energy (Kcal) for 100 g
<u>Hazelnuts</u>	17 , 6 g	Minimum	15 g	4 , 89 g	646
<u>Carrots</u>	9,58 g	Minimum	o,93 g	4,74 g	41
<u>Potatos</u>	17,47 g	Minimum	2 , 02 g	o,78 g	77
<u>Olives</u>	3 , 84 g	15,32 g	1,03 g	o,54 g	145
<u>Zucchinis</u>	3,35 9	o,18 g	1,21 g	2,2 g	16
<u>Green Beans</u>	6 , 97 g	0,22 g	1,83 g	3,26 g	31
<u>Cane Sugar</u>	98 , 09 g	o g	0 , 12 g	97 , 02 g	380
<u>Cocoa</u>	51,39 g	23 , 17 g	16 , 8 g	1,55 g	486
<u>Corn</u>	76 , 85 g	3 , 86 g	6 , 93 g	Minimum	361
<u>Lemon</u>	9,32 g	o,3 g	1 , 1 g	2,5 g	29
<u>Lentils</u>	60 , 08 g	1,06 g	25 , 8 g	2,03 g	353

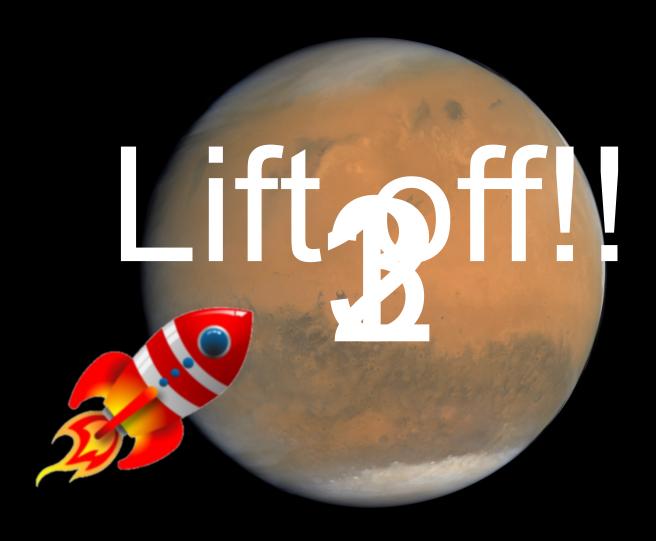
Food	Carbs	Fats	Proteins	Sugars	Energy (Kcal) for 100 g
<u>Chickpea</u>	60 , 65 g	6 , 04 g	19,3 g	10,7 g	364
<u>Chicken</u>	5,3 g	2,5 g	20 , 1 g	Minimum	125
<u>Trouts</u>	Minimum	6 , 18 g	19 , 94 g	Minimum	141
<u>Crickets</u>	64 , 9 g	13,8 g	64 , 9 g	Minimum	534
<u>Waxworms</u>	3,70 g	32 , 8 g	52,7 g	Minimum	649
<u>Dried Milk</u>	51,98 g	Minimum	36 , 16 g	51,98 g	362
<u>Canned Meat</u>	Minimum	3 , 30 g	19 , 0 g	Minimum	111
<u>Canned Tuna</u>	Minimum	8 , 21 g	29 , 13 g	Minimum	198
<u>Hen's Egg</u>	1,1 g	11 g	13 g	Minimum	145
Black Chocolate	52,42 g	38,31 g	6 , 12 g	36,71 g	579

-Green: Cultivated on Mars surface;

-Yellow: Farmed on Mars surface;

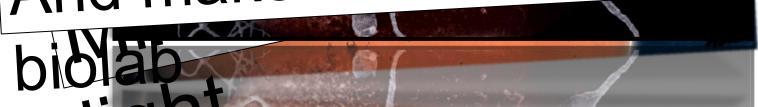
-Red: Brought from Earth.

This is another


costrse

Thank

- Wallanake Some Asportation readways...



And make them evolve in the

Laertiadae Classis

Thanksgivings

- We want to thanks for their support and contribution:
- Riccardo Stevanato for his help in the model realization;
- Andrea Segoni, Maurizio Gioi, Sabina Tomasicchio for his help in the 3D modeling of the Ithaca Outpost;

And in the end

 Our teacher Maura Bruno for her confidence and support.

Sources

- http://phoenix.lpl.arizona.edu/mars111.php
- https://marsnext.jpl.nasa.gov/workshops/2014_05/36_Rice %202020%20Rover%20Gusev.pdf
- https://eps.utk.edu/faculty/burr/pubs/o6Bruno_etal_JGR.pdf
- http://www.nature.com/articles/ncomms13554
- https://www.flickr.com/photos/136797589@No4/
- https://ssed.gsfc.nasa.gov/IPM/PDF/1134.pdf
- http://energy.mit.edu/news/transparent-solar-cells/